Friday, 23 August 2013
Today Let's Talk about Surface Brightness
Give the definition of surface brightness.
The surface brightness of an extended object, for example a galaxy, is the radiative flux per square arcseconds on the sky.
-------
---------------------------- | D |
d --------
D= area on the sky in [square arcseconds]
d= distance of the galaxy we're considering [parsecs]
This galaxy subtends an angle alpha on the sky:
\[\alpha =\frac {D}{d}\]
If I measure the luminosity L of all the stars into the area D I've the TOTAL flux:
\[F =\frac {L}{ 4 \cdot \pi \cdot (d)^2}\]
So I can define the surface brightness with this formula ( very important):
\[I = \frac{F}{(\alpha)^2} = \frac{F}{ \big(\frac{D}{d}\big) ^2}=\frac {L}{ (4 \pi \cdot (d)^{2}) \cdot \big(\frac{D}{d}\big)^{2}}=\frac {L}{ 4 \cdot \pi \cdot (D)^2}\]
\[I \bigg[\frac{mag} {arcseconds^2}\bigg]\]
References:
1)http://asd.gsfc.nasa.gov/David.Davis//courses/phys315/week6/week6.pdf
2)http://www.astro.spbu.ru/staff/resh/Lectures/lec1.pdf
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment